Australian New Crops Info 2016
Supported by the Rural Industries Research and Development Corporation

Listing of Interesting Plants of the World:

Sphagnum balticum

 

 

This species is usually known as:

Sphagnum balticum

 

This species has also been known as:

Sphagnum cuspidatum var. mollissimum, Sphagnum cuspidatum var. roellii, Sphagnum recurvum subsp. balticum, Sphagnum recurvum f. livonicum, Sphagnum ruppinense

 

Common names:

Baltic Sphagnum

 

 

Trends (five databases) 1901-2013:
[Number of papers mentioning Sphagnum balticum: 125]

 

 

Popularity of Sphagnum balticum over time
[Left-hand Plot: Plot of numbers of papers mentioning Sphagnum balticum (histogram and left hand axis scale of left-hand plot) and line of best fit, 1901 to 2013 (equation and % variation accounted for in box); Right-hand Plot: Plot of a proportional micro index, derived from numbers of papers mentioning Sphagnum balticum as a proportion (scaled by multiplying by one million) of the approximate total number of papers available in databases for that year (frequency polygon and left-hand axis scale of right-hand plot) and line of best fit, 1901 to 2013 (equation and % variation accounted for in box)] 

[For larger charts showing the numbers of papers that have mentioned this species over years, select this link; there are links to come back from there]

 

Keywords

[Total number of keywords included in the papers that mentioned this species: 668]

 

Sphagnum (24), peatland (13), Climate change (12), Peat (10), peatlands (10), bog (9), Methane (8), nitrogen (8), Eriophorum vaginatum (7), photosynthesis (7), temperature (7), subarctic (6), sphagnum balticum (5), Water table (5), bryophyte (4), bryophytes (4), fen (4), global change (4), growth (4), nitrogen deposition (4), productivity (4), Arctic (3), bogs (3), carbon (3), carbon dioxide <ARROW (3), CCA (3), CO2 exchange (3), Competition (3), decomposition (3), DGGE (3), global warming (3), Kinetics (3), Litter quality (3), mire (3), mosses and liverworts (3), Smouldering combustion (3), sphagnum fuscum (3), sphagnum tenellum (3), Succession (3), Tropospheric ozone (3), 137Cs inventory (2), 137Cs migration (2), 14C pulse-labelling (2), acidification (2), Actinobacterial community (2), Adaptation (2), Below-ground (2), Carbon allocation (2), carbon balance (2), Carex rotundata (2), Chamber (2), climate (2), Closed-chamber measurements (2), desiccation (2), Dispersal (2), dissolved organic carbon (2), Drainage (2), Eddy covariance (2), Environmental change (2), Eriophorum angustifolium (2), Establishment (2), Flavonol (2), Flux calculation (2), Footprint (2), Fungal community (2), Gas diffusion (2), geographical distribution (2), Heat wave (2), Heather (2), hummocks (2), Hylocomium splendens (2), Iridoid (2), litter chemistry (2), litter decomposition (2), Low pine DOWN>site (2), Menyanthes trifoliata L. (2), mineralization (2), Minerotrophic (2), Mire ecosystem (2), moss (2), Non-linearity (2), Ombrotrophic (2), Open bog site (2), Ozone (2), peat accumulation (2), Peatland ecosystem (2), permafrost (2), Phenolics (2), plant litter (2), Radiocaesium (2), Raised bog (2), recovery (2), Regression (2), Remote sensing (2), respiration (2), rewetting (2), Sedge (2), solar forcing (2), species differences (2), sphagnum lindbergii (2), Sphagnum papillosum (2), Sphagnum sp. (2)…..

 

[If all keywords are not here (as indicated by .....), they can be accessed from this link; there are links to come back from there]

 

 

Most likely scope for crop use/product (%):
[Please note: When there are only a few papers mentioning a species, care should be taken with the interpretation of these crop use/product results; as well, a mention may relate to the use of a species, or the context in which it grows, rather than a product]

 

turf (85.87), bioindicator (5.31), oilseed/fat (2.40), model (1.71), medicinal (0.57), ornamental (0.44), shade (0.44), poison (0.41), starch (0.38), weed (0.32)…..

 

[To see the full list of crop use/product outcomes, from searching abstracts of the papers that have mentioned this species, select this link; details of the analysis process have also been included; there are links to come back from there]

 

 

Recent mentions of this species in the literature:
[since 2012, with links to abstracts; The references from 1901-2013 which have been used for the trend, keyword and crop use/product analyses below, are listed below these references]

 

Bjerke JW, Bokhorst S, Callaghan TV and Phoenix GK (2017) Persistent reduction of segment growth and photosynthesis in a widespread and important sub-Arctic moss species after cessation of three years of experimental winter warming. Functional Ecology 31, 127-34. http://dx.doi.org/10.1111/1365-2435.12703

Gałka M, Tobolski K, Lamentowicz Ł, Ersek V, Jassey VEJ, van der Knaap WO and Lamentowicz M (2017) Unveiling exceptional Baltic bog ecohydrology, autogenic succession and climate change during the last 2000 years in CE Europe using replicate cores, multi-proxy data and functional traits of testate amoebae. Quaternary Science Reviews 156, 90-106. http://www.sciencedirect.com/science/article/pii/S0277379116306072

Helbig M, Chasmer LE, Desai AR, Kljun N, Quinton WL and Sonnentag O (2017) Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape. Global Change Biology, n/a-n/a. http://dx.doi.org/10.1111/gcb.13638

Olid C, Bindler R, Nilsson MB, Eriksson T and Klaminder J (2017) Effects of warming and increased nitrogen and sulfur deposition on boreal mire geochemistry. Applied Geochemistry 78, 149-57. http://www.sciencedirect.com/science/article/pii/S088329271630230X

Zhao J, Peichl M and Nilsson MB (2017) Long-term enhanced winter soil frost alters growing season CO2 fluxes through its impact on vegetation development in a boreal peatland. Global Change Biology, n/a-n/a. http://dx.doi.org/10.1111/gcb.13621

Craft C (2016) 7 - Peatlands. In ‘Creating and Restoring Wetlands’. (Ed.^(Eds  pp. 161-92. (Elsevier: Boston). http://www.sciencedirect.com/science/article/pii/B9780124072329000075

Helbig M, Chasmer LE, Kljun N, Quinton WL, Treat CC and Sonnentag O (2016) The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape. Global Change Biology, n/a-n/a. http://dx.doi.org/10.1111/gcb.13520

Helbig M, Wischnewski K, Kljun N, Chasmer LE, Quinton WL, Detto M and Sonnentag O (2016) Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss. Global Change Biology 22, 4048-66. http://dx.doi.org/10.1111/gcb.13348

Kajukało K, Fiałkiewicz-Kozieł B, Gałka M, Kołaczek P and Lamentowicz M (2016) Abrupt ecological changes in the last 800 years inferred from a mountainous bog using testate amoebae traits and multi-proxy data. European Journal of Protistology 55, Part B, 165-80. http://www.sciencedirect.com/science/article/pii/S0932473916300220

Lozanovska I, Kuzyakov Y, Krohn J, Parvin S and Dorodnikov M (2016) Effects of nitrate and sulfate on greenhouse gas emission potentials from microform-derived peats of a boreal peatland: A 13C tracer study. Soil Biology and Biochemistry 100, 182-91. http://www.sciencedirect.com/science/article/pii/S0038071716301195

Mathijssen PJH, Väliranta M, Korrensalo A, Alekseychik P, Vesala T, Rinne J and Tuittila E-S (2016) Reconstruction of Holocene carbon dynamics in a large boreal peatland complex, southern Finland. Quaternary Science Reviews 142, 1-15. http://www.sciencedirect.com/science/article/pii/S0277379116301251

Raven JA and Colmer TD (2016) Life at the boundary: photosynthesis at the soil-fluid interface. A synthesis focusing on mosses. J. Exp. Bot. 67, 1613-23. http://jxb.oxfordjournals.org/cgi/content/abstract/67/6/1613

Tsyganov AN, Mityaeva OA, Mazei YA and Payne RJ (2016) Testate amoeba transfer function performance along localised hydrological gradients. European Journal of Protistology 55, Part B, 141-51. http://www.sciencedirect.com/science/article/pii/S0932473915001029

Zhao J, Peichl M and Nilsson MB (2016) Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland. Global Change Biology 22, 750-62. http://dx.doi.org/10.1111/gcb.13119

Anonymous (2015) Chapter 5 - Modeling Peat-Fire Hazards: From Drying to Smoldering A2 - Stracher, Glenn B. In ‘Coal and Peat Fires: a Global Perspective’. (Ed.^(Eds Prakash A and Rein G) pp. 89-120. (Elsevier: Boston). http://www.sciencedirect.com/science/article/pii/B9780444595102000057

Holmgren M, Lin C-Y, Murillo JE, Nieuwenhuis A, Penninkhof J, Sanders N, van Bart T, van Veen H, Vasander H, Vollebregt ME and Limpens J (2015) Positive shrub–tree interactions facilitate woody encroachment in boreal peatlands. Journal of Ecology 103, 58-66. http://dx.doi.org/10.1111/1365-2745.12331

Johnson MG and Shaw AJ (2015) Genetic diversity, sexual condition, and microhabitat preference determine mating patterns in Sphagnum (Sphagnaceae) peat-mosses. Biological Journal of the Linnean Society 115, 96-113. http://dx.doi.org/10.1111/bij.12497

Lamentowicz M, Słowiński M, Marcisz K, Zielińska M, Kaliszan K, Lapshina E, Gilbert D, Buttler A, Fiałkiewicz-Kozieł B, Jassey VEJ, Laggoun-Defarge F and Kołaczek P (2015) Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive. Quaternary Research 84, 312-25. http://www.sciencedirect.com/science/article/pii/S0033589415000885

Morris JL, Väliranta M, Sillasoo Ü, Tuittila E-S and Korhola A (2015) Re-evaluation of late Holocene fire histories of three boreal bogs suggest a link between bog fire and climate. Boreas 44, 60-7. http://dx.doi.org/10.1111/bor.12086

Morris PJ, Baird AJ and Belyea LR (2015) Bridging the gap between models and measurements of peat hydraulic conductivity. Water Resources Research 51, 5353-64. http://dx.doi.org/10.1002/2015WR017264

Nijp JJ, Limpens J, Metselaar K, Peichl M, Nilsson MB, van der Zee SEATM and Berendse F (2015) Rain events decrease boreal peatland net CO2 uptake through reduced light availability. Global Change Biology 21, 2309-20. http://dx.doi.org/10.1111/gcb.12864

Novenko EY, Tsyganov AN, Volkova EM, Babeshko KV, Lavrentiev NV, Payne RJ and Mazei YA (2015) The Holocene paleoenvironmental history of central European Russia reconstructed from pollen, plant macrofossil, and testate amoeba analyses of the Klukva peatland, Tula region. Quaternary Research 83, 459-68. http://www.sciencedirect.com/science/article/pii/S0033589415000307

Stepanova VA, Pokrovsky OS, Viers J, Mironycheva-Tokareva NP, Kosykh NP and Vishnyakova EK (2015) Elemental composition of peat profiles in western Siberia: Effect of the micro-landscape, latitude position and permafrost coverage. Applied Geochemistry 53, 53-70. http://www.sciencedirect.com/science/article/pii/S0883292714003035

Weston DJ, Timm CM, Walker AP, Gu L, Muchero W, Schmutz J, Shaw AJ, Tuskan GA, Warren JM and Wullschleger SD (2015) Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host–microbiome interactions on understanding ecosystem function. Plant, Cell & Environment 38, 1737-51. http://dx.doi.org/10.1111/pce.12458

Fabiańska MJ, Szymczyk A and Chłapik M (2014) Fossil fuel compounds from fly dust in recent organic matter of southern Poland peats. Chemie der Erde - Geochemistry 74, 237-50. http://www.sciencedirect.com/science/article/pii/S0009281913000640

Iwahana G, Takano S, Petrov RE, Tei S, Shingubara R, Maximov TC, Fedorov AN, Desyatkin AR, Nikolaev AN, Desyatkin RV and Sugimoto A (2014) Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia. Polar Science 8, 96-113. http://www.sciencedirect.com/science/article/pii/S1873965214000164

Jassey VEJ, Lamentowicz Ł, Robroek BJM, Gąbka M, Rusińska A and Lamentowicz M (2014) Plant functional diversity drives niche-size-structure of dominant microbial consumers along a poor to extremely rich fen gradient. Journal of Ecology 102, 1150-62. http://dx.doi.org/10.1111/1365-2745.12288

Laing CG, Granath G, Belyea LR, Allton KE and Rydin H (2014) Tradeoffs and scaling of functional traits in Sphagnum as drivers of carbon cycling in peatlands. Oikos 123, 817-28. http://dx.doi.org/10.1111/oik.01061

Nijp JJ, Limpens J, Metselaar K, van der Zee SEATM, Berendse F and Robroek BJM (2014) Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands? New Phytologist 203, 70-80. http://dx.doi.org/10.1111/nph.12792

Olid C, Nilsson MB, Eriksson T and Klaminder J (2014) The effects of temperature and nitrogen and sulfur additions on carbon accumulation in a nutrient-poor boreal mire: Decadal effects assessed using 210Pb peat chronologies. Journal of Geophysical Research: Biogeosciences 119, 2013JG002365. http://dx.doi.org/10.1002/2013JG002365

Rybina TA, Bazanov VA and Berezin AE (2014) Spatial Organization and Structure of the Ridge-hollow Swamp Complex in Taiga Zone of Western Siberia. Procedia Earth and Planetary Science 10, 410-3. http://www.sciencedirect.com/science/article/pii/S1878522014001350

Abbott GD, Swain EY, Muhammad AB, Allton K, Belyea LR, Laing CG and Cowie GL (2013) Effect of water-table fluctuations on the degradation of Sphagnum phenols in surficial peats. Geochimica et Cosmochimica Acta 106, 177-91. http://www.sciencedirect.com/science/article/pii/S0016703712007326

Fan Z, David McGuire A, Turetsky MR, Harden JW, Michael Waddington J and Kane ES (2013) The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change. Global Change Biology 19, 604-20. http://dx.doi.org/10.1111/gcb.12041

Gažovič M, Forbrich I, Jager DF, Kutzbach L, Wille C and Wilmking M (2013) Hydrology-driven ecosystem respiration determines the carbon balance of a boreal peatland. Science of The Total Environment 463–464, 675-82. http://www.sciencedirect.com/science/article/pii/S0048969713007298

Hui R, Li X, Chen C, Zhao X, Jia R, Liu L and Wei Y (2013) Responses of photosynthetic properties and chloroplast ultrastructure of Bryum argenteum from a desert biological soil crust to elevated ultraviolet-B radiation. Physiologia Plantarum 147, 489-501. http://dx.doi.org/10.1111/j.1399-3054.2012.01679.x

Swain EY and Abbott GD (2013) The effect of redox conditions on sphagnum acid thermochemolysis product distributions in a northern peatland. Journal of Analytical and Applied Pyrolysis 103, 2-7. http://www.sciencedirect.com/science/article/pii/S0165237012002859

Weedon JT, Aerts R, Kowalchuk GA, van Logtestijn R, Andringa D and van Bodegom PM (2013) Temperature sensitivity of peatland C and N cycling: Does substrate supply play a role? Soil Biology and Biochemistry 61, 109-20. http://www.sciencedirect.com/science/article/pii/S0038071713000758

Wojtuń B, Samecka-Cymerman A, Kolon K and Kempers AJ (2013) Decreasing concentrations of metals in Sphagnum mosses in ombrotrophic mires of the Sudety mountains (SW Poland) since late 1980s. Chemosphere 91, 1456-61. http://www.sciencedirect.com/science/article/pii/S0045653512015081

Ågren AM, Haei M, Blomkvist P, Nilsson MB and Laudon H (2012) Soil frost enhances stream dissolved organic carbon concentrations during episodic spring snow melt from boreal mires. Global Change Biology 18, 1895-903. http://dx.doi.org/10.1111/j.1365-2486.2012.02666.x

Cancellieri D, Leroy-Cancellieri V, Leoni E, Simeoni A, Kuzin АY, Filkov АI and Rein G (2012) Kinetic investigation on the smouldering combustion of boreal peat. Fuel 93, 479-85. http://www.sciencedirect.com/science/article/pii/S0016236111006120

Fan Z, David McGuire A, Turetsky MR, Harden JW, Michael Waddington J and Kane ES (2012) The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change. Global Change Biology, n/a-n/a. http://dx.doi.org/10.1111/gcb.12041

Fritz C, van Dijk G, Smolders AJP, Pancotto VA, Elzenga TJTM, Roelofs JGM and Grootjans AP (2012) Nutrient additions in pristine Patagonian Sphagnum bog vegetation: can phosphorus addition alleviate (the effects of) increased nitrogen loads. Plant Biology 14, 491-9. http://dx.doi.org/10.1111/j.1438-8677.2011.00527.x

Granath G, Strengbom J and Rydin H (2012) Direct physiological effects of nitrogen on Sphagnum: a greenhouse experiment. Functional Ecology 26, 353-64. http://dx.doi.org/10.1111/j.1365-2435.2011.01948.x

Hui R, Li X, Chen C, Zhao X, Jia R, Liu L and Wei Y (2012) Responses of photosynthetic properties and chloroplast ultrastructure of Bryum argenteum from a desert biological soil crust to elevated ultraviolet-B radiation. Physiologia Plantarum, n/a-n/a. http://dx.doi.org/10.1111/j.1399-3054.2012.01679.x

Limpens J, Granath G, Aerts R, Heijmans MMPD, Sheppard LJ, Bragazza L, Williams BL, Rydin H, Bubier J, Moore T, Rochefort L, Mitchell EAD, Buttler A, van den Berg LJL, Gunnarsson U, Francez AJ, Gerdol R, Thormann M, Grosvernier P, Wiedermann MM, Nilsson MB, Hoosbeek MR, Bayley S, Nordbakken JF, Paulissen MPCP, Hotes S, Breeuwer A, Ilomets M, Tomassen HBM, Leith I and Xu B (2012) Glasshouse vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses? New Phytologist 195, 408-18. http://dx.doi.org/10.1111/j.1469-8137.2012.04157.x

Olefeldt D and Roulet NT (2012) Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. Journal of Geophysical Research: Biogeosciences 117, G01005. http://dx.doi.org/10.1029/2011JG001819

Olefeldt D, Roulet NT, Bergeron O, Crill P, Bäckstrand K and Christensen TR (2012) Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands. Geophysical Research Letters 39, n/a-n/a. http://dx.doi.org/10.1029/2011GL050355

Peltoniemi K, Straková P, Fritze H, Iráizoz PA, Pennanen T and Laiho R (2012) How water-level drawdown modifies litter-decomposing fungal and actinobacterial communities in boreal peatlands. Soil Biology and Biochemistry 51, 20-34. http://www.sciencedirect.com/science/article/pii/S0038071712001526

Pouliot R, Rochefort L and Karofeld E (2012) Initiation of microtopography in re-vegetated cutover peatlands: evolution of plant species composition. Applied Vegetation Science 15, 369-82. http://dx.doi.org/10.1111/j.1654-109X.2011.01164.x

Straková P, Penttilä T, Laine J and Laiho R (2012) Disentangling direct and indirect effects of water table drawdown on above- and belowground plant litter decomposition: consequences for accumulation of organic matter in boreal peatlands. Global Change Biology 18, 322-35. http://dx.doi.org/10.1111/j.1365-2486.2011.02503.x

 

 

References 1901-2013 (and links to abstracts):
[Number of papers mentioning Sphagnum balticum: 125; Any undated papers have been included at the end]

 

Ågren AM, Haei M, Blomkvist P, Nilsson MB and Laudon H (2012) Soil frost enhances stream dissolved organic carbon concentrations during episodic spring snow melt from boreal mires. Global Change Biology 18, 1895-1903. http://dx.doi.org/10.1111/j.1365-2486.2012.02666.x

Cancellieri D, Leroy-Cancellieri V, Leoni E, Simeoni A, Kuzin АY, Filkov АI and Rein G (2012) Kinetic investigation on the smouldering combustion of boreal peat. Fuel 93, 479-485. http://www.sciencedirect.com/science/article/pii/S0016236111006120

Fan Z, David McGuire A, Turetsky MR, Harden JW, Michael Waddington J and Kane ES (2012) The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change. Global Change Biology, n/a-n/a. http://dx.doi.org/10.1111/gcb.12041

Fritz C, van Dijk G, Smolders AJP, Pancotto VA, Elzenga TJTM, Roelofs JGM and Grootjans AP (2012) Nutrient additions in pristine Patagonian Sphagnum bog vegetation: can phosphorus addition alleviate (the effects of) increased nitrogen loads. Plant Biology 14, 491-499. http://dx.doi.org/10.1111/j.1438-8677.2011.00527.x

Granath G, Strengbom J and Rydin H (2012) Direct physiological effects of nitrogen on Sphagnum: a greenhouse experiment. Functional Ecology 26, 353-364. http://dx.doi.org/10.1111/j.1365-2435.2011.01948.x

Hui R, Li X, Chen C, Zhao X, Jia R, Liu L and Wei Y (2012) Responses of photosynthetic properties and chloroplast ultrastructure of Bryum argenteum from a desert biological soil crust to elevated ultraviolet-B radiation. Physiologia Plantarum, n/a-n/a. http://dx.doi.org/10.1111/j.1399-3054.2012.01679.x

Limpens J, Granath G, Aerts R, Heijmans MMPD, Sheppard LJ, Bragazza L, Williams BL, Rydin H, Bubier J, Moore T, Rochefort L, Mitchell EAD, Buttler A, van den Berg LJL, Gunnarsson U, Francez AJ, Gerdol R, Thormann M, Grosvernier P, Wiedermann MM, Nilsson MB, Hoosbeek MR, Bayley S, Nordbakken JF, Paulissen MPCP, Hotes S, Breeuwer A, Ilomets M, Tomassen HBM, Leith I and Xu B (2012) Glasshouse vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses? New Phytologist 195, 408-418. http://dx.doi.org/10.1111/j.1469-8137.2012.04157.x

Olefeldt D, Roulet NT, Bergeron O, Crill P, Bäckstrand K and Christensen TR (2012) Net carbon accumulation of a high-latitude permafrost palsa mire similar to permafrost-free peatlands. Geophysical Research Letters 39, n/a-n/a. http://dx.doi.org/10.1029/2011GL050355

Peltoniemi K, Straková P, Fritze H, Iráizoz PA, Pennanen T and Laiho R (2012) How water-level drawdown modifies litter-decomposing fungal and actinobacterial communities in boreal peatlands. Soil Biology and Biochemistry 51, 20-34. http://www.sciencedirect.com/science/article/pii/S0038071712001526

Pouliot R, Rochefort L and Karofeld E (2012) Initiation of microtopography in re-vegetated cutover peatlands: evolution of plant species composition. Applied Vegetation Science 15, 369-382. http://dx.doi.org/10.1111/j.1654-109X.2011.01164.x

Straková P, Penttilä T, Laine J and Laiho R (2012) Disentangling direct and indirect effects of water table drawdown on above- and belowground plant litter decomposition: consequences for accumulation of organic matter in boreal peatlands. Global Change Biology 18, 322-335. http://dx.doi.org/10.1111/j.1365-2486.2011.02503.x

Andersen R, Poulin M, Borcard D, Laiho R, Laine J, Vasander H and Tuittila ET (2011) Environmental control and spatial structures in peatland vegetation. Journal of Vegetation Science 22, 878-890. http://dx.doi.org/10.1111/j.1654-1103.2011.01295.x

Andersson RA, Kuhry P, Meyers P, Zebühr Y, Crill P and Mörth M (2011) Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic. Organic Geochemistry 42, 1065-1075. http://www.sciencedirect.com/science/article/pii/S014663801100177X

Bernhardt EL, Hollingsworth TN and Chapin IIIFS (2011) Fire severity mediates climate-driven shifts in understorey community composition of black spruce stands of interior Alaska. Journal of Vegetation Science 22, 32-44. http://dx.doi.org/10.1111/j.1654-1103.2010.01231.x

Bjerke JW, Bokhorst S, Zielke M, Callaghan TV, Bowles FW and Phoenix GK (2011) Contrasting sensitivity to extreme winter warming events of dominant sub-Arctic heathland bryophyte and lichen species. Journal of Ecology 99, 1481-1488. http://dx.doi.org/10.1111/j.1365-2745.2011.01859.x

Forbrich I, Kutzbach L, Wille C, Becker T, Wu J and Wilmking M (2011) Cross-evaluation of measurements of peatland methane emissions on microform and ecosystem scales using high-resolution landcover classification and source weight modelling. Agricultural and Forest Meteorology 151, 864-874. http://www.sciencedirect.com/science/article/pii/S016819231100058X

Gerdol R and Vicentini R (2011) Response to heat stress of populations of two Sphagnum species from alpine bogs at different altitudes. Environmental and Experimental Botany 74, 22-30. http://www.sciencedirect.com/science/article/pii/S009884721100102X

Haapala JK, Mörsky SK, Rinnan R, Saarnio S, Martikanen PJ, Holopainen T and Silvola J (2011) Long-term effects of ozone on CO2 exchange in peatland microcosms. Atmospheric Environment 45, 4002-4007. http://www.sciencedirect.com/science/article/pii/S1352231011004468

Haapalehto TO, Vasander H, Jauhiainen S, Tahvanainen T and Kotiaho JS (2011) The Effects of Peatland Restoration on Water-Table Depth, Elemental Concentrations, and Vegetation: 10 Years of Changes. Restoration Ecology 19, 587-598. http://dx.doi.org/10.1111/j.1526-100X.2010.00704.x

Kapfer J, Grytnes J-A, Gunnarsson U and Birks HJB (2011) Fine-scale changes in vegetation composition in a boreal mire over 50 years. Journal of Ecology 99, 1179-1189. http://dx.doi.org/10.1111/j.1365-2745.2011.01847.x

Laine AM, Leppälä M, Tarvainen O, Päätalo ML, Seppänen R and Tolvanen A (2011) Restoration of managed pine fens: effect on hydrology and vegetation. Applied Vegetation Science 14, 340-349. http://dx.doi.org/10.1111/j.1654-109X.2011.01123.x

Limpens J, Granath G, Gunnarsson U, Aerts R, Bayley S, Bragazza L, Bubier J, Buttler A, van den Berg LJL, Francez AJ, Gerdol R, Grosvernier P, Heijmans MMPD, Hoosbeek MR, Hotes S, Ilomets M, Leith I, Mitchell EAD, Moore T, Nilsson MB, Nordbakken JF, Rochefort L, Rydin H, Sheppard LJ, Thormann M, Wiedermann MM, Williams BL and Xu B (2011) Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytologist 191, 496-507. http://dx.doi.org/10.1111/j.1469-8137.2011.03680.x

Mörsky SK, Haapala JK, Rinnan R, Saarnio S, Silvola J, Martikainen PJ and Holopainen T (2011) Minor effects of long-term ozone exposure on boreal peatland species Eriophorum vaginatum and Sphagnum papillosum. Environmental and Experimental Botany 72, 455-463. http://www.sciencedirect.com/science/article/pii/S0098847210002248

Olsrud M and Christensen TR (2011) Carbon partitioning in a wet and a semiwet subarctic mire ecosystem based on in situ 14C pulse-labelling. Soil Biology and Biochemistry 43, 231-239. http://www.sciencedirect.com/science/article/pii/S0038071710003676

Pancost RD, McClymont EL, Bingham EM, Roberts Z, Charman DJ, Hornibrook ERC, Blundell A, Chambers FM, Lim KLH and Evershed RP (2011) Archaeol as a methanogen biomarker in ombrotrophic bogs. Organic Geochemistry 42, 1279-1287. http://www.sciencedirect.com/science/article/pii/S0146638011001823

Sillasoo Ü, Väliranta M and Tuittila E-S (2011) Fire history and vegetation recovery in two raised bogs at the Baltic Sea. Journal of Vegetation Science 22, 1084-1093. http://dx.doi.org/10.1111/j.1654-1103.2011.01307.x

Tahvanainen T (2011) Abrupt ombrotrophication of a boreal aapa mire triggered by hydrological disturbance in the catchment. Journal of Ecology 99, 404-415. http://dx.doi.org/10.1111/j.1365-2745.2010.01778.x

Bingham EM, McClymont EL, Väliranta M, Mauquoy D, Roberts Z, Chambers FM, Pancost RD and Evershed RP (2010) Conservative composition of n-alkane biomarkers in Sphagnum species: Implications for palaeoclimate reconstruction in ombrotrophic peat bogs. Organic Geochemistry 41, 214-220. http://www.sciencedirect.com/science/article/pii/S0146638009001375

Eriksson T, ÖQuist MG and Nilsson MB (2010) Production and oxidation of methane in a boreal mire after a decade of increased temperature and nitrogen and sulfur deposition. Global Change Biology 16, 2130-2144. http://dx.doi.org/10.1111/j.1365-2486.2009.02097.x

Forbrich I, Kutzbach L, Hormann A and Wilmking M (2010) A comparison of linear and exponential regression for estimating diffusive CH4 fluxes by closed-chambers in peatlands. Soil Biology and Biochemistry 42, 507-515. http://www.sciencedirect.com/science/article/pii/S0038071709004672

Haas JN and Erhardt A (2010) Prof. Dr. Heinrich Zoller (1923–2009). Review of Palaeobotany and Palynology 162, 111-115. http://www.sciencedirect.com/science/article/pii/S0034666710000709

Paal J, Vellak K, Liira J and Karofeld E (2010) Bog Recovery in Northeastern Estonia after the Reduction of Atmospheric Pollutant Input. Restoration Ecology 18, 387-400. http://dx.doi.org/10.1111/j.1526-100X.2009.00608.x

Slack NG and Horton DG (2010) Bryophytes and bryophyte ecology of the Bering Glacier Region. Geological Society of America Special Papers 462, 365-371. http://specialpapers.gsapubs.org/cgi/content/abstract/462/0/365

Soini P, Riutta T, Yli-Petäys M and Vasander H (2010) Comparison of Vegetation and CO2 Dynamics Between a Restored Cut-Away Peatland and a Pristine Fen: Evaluation of the Restoration Success. Restoration Ecology 18, 894-903. http://dx.doi.org/10.1111/j.1526-100X.2009.00520.x

Beaulieu-Audy V, Garneau M, Richard PJH and Asnong H (2009) Holocene palaeoecological reconstruction of three boreal peatlands in the La Grande Riviere region, Quebec, Canada. The Holocene 19, 459-476. http://hol.sagepub.com/cgi/content/abstract/19/3/459

Breeuwer A, Robroek BJM, Limpens J, Heijmans MMPD, Schouten MGC and Berendse F (2009) Decreased summer water table depth affects peatland vegetation. Basic and Applied Ecology 10, 330-339. http://www.sciencedirect.com/science/article/pii/S1439179108000510

Granath G, Strengbom J, Breeuwer A, Heijmans MM, Berendse F and Rydin H (2009) Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient. Oecologia 159, 705-15.

Granath G, Wiedermann MM and Strengbom J (2009) Physiological responses to nitrogen and sulphur addition and raised temperature in Sphagnum balticum. Oecologia 161, 481-90.

Korpela I, Koskinen M, Vasander H, Holopainen M and Minkkinen K (2009) Airborne small-footprint discrete-return LiDAR data in the assessment of boreal mire surface patterns, vegetation, and habitats. Forest Ecology and Management 258, 1549-1566. http://www.sciencedirect.com/science/article/pii/S0378112709004848

Lang SI, Cornelissen JHC, Klahn T, Van Logtestijn RSP, Broekman R, Schweikert W and Aerts R (2009) An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. Journal of Ecology 97, 886-900. http://dx.doi.org/10.1111/j.1365-2745.2009.01538.x

Martz F, Turunen M, Julkunen-Tiitto R, Lakkala K and Sutinen M-L (2009) Effect of the temperature and the exclusion of UVB radiation on the phenolics and iridoids in Menyanthes trifoliata L. leaves in the subarctic. Environmental Pollution 157, 3471-3478. http://www.sciencedirect.com/science/article/pii/S0269749109003261

Martz Fo, Turunen M, Julkunen-Tiitto R, Lakkala K and Sutinen M-L (2009) Effect of the temperature and the exclusion of UVB radiation on the phenolics and iridoids in Menyanthes trifoliata L. leaves in the subarctic. Environmental Pollution 157, 3471-3478. http://www.sciencedirect.com/science/article/pii/S0269749109003261

Newsham KK and Robinson SA (2009) Responses of plants in polar regions to UVB exposure: a meta-analysis. Global Change Biology 15, 2574-2589. http://dx.doi.org/10.1111/j.1365-2486.2009.01944.x

Pacifico F, Harrison SP, Jones CD and Sitch S (2009) Isoprene emissions and climate. Atmospheric Environment 43, 6121-6135. http://www.sciencedirect.com/science/article/pii/S1352231009007663

Peltoniemi K, Fritze H and Laiho R (2009) Response of fungal and actinobacterial communities to water-level drawdown in boreal peatland sites. Soil Biology and Biochemistry 41, 1902-1914. http://www.sciencedirect.com/science/article/pii/S0038071709002247

RosÉn K, Vinichuk M and Johanson KJ (2009) 137Cs in a raised bog in central Sweden. Journal of Environmental Radioactivity 100, 534-539. http://www.sciencedirect.com/science/article/pii/S0265931X09000423

Rosén K, Vinichuk M and Johanson KJ (2009) 137Cs in a raised bog in central Sweden. Journal of Environmental Radioactivity 100, 534-539. http://www.sciencedirect.com/science/article/pii/S0265931X09000423

Wiedermann MM, Gunnarsson U, Ericson L and Nordin A (2009) Ecophysiological adjustment of two Sphagnum species in response to anthropogenic nitrogen deposition. New Phytol 181, 208-17.

Wiedermann MM, Gunnarsson U, Nilsson MB, Nordin A and Ericson L (2009) Can small-scale experiments predict ecosystem responses? An example from peatlands. Oikos 118, 449-456. http://dx.doi.org/10.1111/j.1600-0706.2008.17129.x

Breeuwer A, Heijmans M, Robroek BJM, Limpens J and Berendse F (2008) The effect of increased temperature and nitrogen deposition on decomposition in bogs. Oikos 117, 1258-1268. http://dx.doi.org/10.1111/j.0030-1299.2008.16518.x

Jia G, Dungait JAJ, Bingham EM, Valiranta M, Korhola A and Evershed RP (2008) Neutral monosaccharides as biomarker proxies for bog-forming plants for application to palaeovegetation reconstruction in ombrotrophic peat deposits. Organic Geochemistry 39, 1790-1799. http://www.sciencedirect.com/science/article/pii/S0146638008001903

Kuhry P (2008) Palsa and peat plateau development in the Hudson Bay Lowlands, Canada: timing, pathways and causes. Boreas 37, 316-327. http://dx.doi.org/10.1111/j.1502-3885.2007.00022.x

Lappalainen NM, Huttunen S and Suokanerva H (2008) Acclimation of a pleurocarpous moss Pleurozium schreberi (Britt.) Mitt. to enhanced ultraviolet radiation in situ. Global Change Biology 14, 321-333. http://dx.doi.org/10.1111/j.1365-2486.2007.01489.x

Mauquoy D, Yeloff D, Van Geel B, Charman DJ and Blundell A (2008) Two decadally resolved records from north-west European peat bogs show rapid climate changes associated with solar variability during the mid–late Holocene. Journal of Quaternary Science 23, 745-763. http://dx.doi.org/10.1002/jqs.1158

MÖRsky SK, Haapala JK, Rinnan R, Tiiva P, Saarnio S, Silvola J, Holopainen T and Martikainen PJ (2008) Long-term ozone effects on vegetation, microbial community and methane dynamics of boreal peatland microcosms in open-field conditions. Global Change Biology 14, 1891-1903. http://dx.doi.org/10.1111/j.1365-2486.2008.01615.x

Pohjamo M, Korpelainen H and Kalinauskaitė N (2008) Restricted gene flow in the clonal hepatic Trichocolea tomentella in fragmented landscapes. Biological Conservation 141, 1204-1217. http://www.sciencedirect.com/science/article/pii/S0006320708000736

Rees PA (2008) Appendix 4: Schedules to the Wildlife and Countryside Act 1981 and European Listed Species. In ‘Urban Environments and Wildlife Law’. (Ed.^(Eds  pp. 368-381. (Blackwell Science Ltd). http://dx.doi.org/10.1002/9780470758519.app4

van der Linden M, Barke J, Vickery E, Charman DJ and van Geel B (2008) Late Holocene human impact and climate change recorded in a North Swedish peat deposit. Palaeogeography, Palaeoclimatology, Palaeoecology 258, 1-27. http://www.sciencedirect.com/science/article/pii/S0031018207005767

Gunnarsson U and Flodin L-Š(2007) Vegetation shifts towards wetter site conditions on oceanic ombrotrophic bogs in southwestern Sweden. Journal of Vegetation Science 18, 595-604. http://dx.doi.org/10.1111/j.1654-1103.2007.tb02573.x

Lindroth A, Lund M, Nilsson M, Aurela M, Christensen TR, Laurila T, Rinne J, Riutta T, Sagerfors J, StrÖM L, Tuovinen J-P and Vesala T (2007) Environmental controls on the CO2 exchange in north European mires. Tellus B 59, 812-825. http://dx.doi.org/10.1111/j.1600-0889.2007.00310.x

Riutta T, Laine J, Aurela M, Rinne J, Vesala T, Laurila T, Haapanala S, Pihlatie M and Tuittila ES (2007) Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem. Tellus B 59, 838-852. http://dx.doi.org/10.1111/j.1600-0889.2007.00302.x

Sillasoo U, Mauquoy D, Blundell A, Charman DAN, Blaauw M, Daniell JRG, Toms P, Newberry J, Chambers FM and Karofeld E (2007) Peat multi-proxy data from Männikjärve bog as indicators of late Holocene climate changes in Estonia. Boreas 36, 20-37. http://dx.doi.org/10.1111/j.1502-3885.2007.tb01177.x

Valiranta M, Korhola A, Seppa H, Tuittila E-S, Sarmaja-Korjonen K, Laine J and Alm J (2007) High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the late Holocene: a quantitative approach. The Holocene 17, 1093-1107. http://hol.sagepub.com/cgi/content/abstract/17/8/1093

Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology 94, 713-724. http://dx.doi.org/10.1111/j.1365-2745.2006.01142.x

Gerdol R, Bragazza L and Brancaleoni L (2006) Microbial nitrogen cycling interacts with exogenous nitrogen supply in affecting growth of Sphagnum papillosum. Environmental and Experimental Botany 57, 1-8. http://www.sciencedirect.com/science/article/pii/S0098847205000559

L B (2006) Chapter 12 Consequences of increasing levels of atmospheric nitrogen deposition on ombrotrophic peatlands: a plant-based perspective. In ‘Developments in Earth Surface Processes’. (Ed.^(Eds I.P. Martini AMC and Chesworth W) pp. 271-285. (Elsevier). http://www.sciencedirect.com/science/article/pii/S0928202506090122

Sundberg S, Hansson J and Rydin H (2006) Colonization of Sphagnum on land uplift islands in the Baltic Sea: time, area, distance and life history. Journal of Biogeography 33, 1479-1491. http://dx.doi.org/10.1111/j.1365-2699.2006.01520.x

Ueno T and Kanda H (2006) Photosynthetic response of the arctic semi-aquatic moss Calliergon giganteum to water content. Aquatic Botany 85, 241-243. http://www.sciencedirect.com/science/article/pii/S0304377006000532

Ukonmaanaho L, Nieminen TM, Rausch N, Cheburkin A, Le Roux G and Shotyk W (2006) Recent organic matter accumulation in relation to some climatic factors in ombrotrophic peat bogs near heavy metal emission sources in Finland. Global and Planetary Change 53, 259-268. http://www.sciencedirect.com/science/article/pii/S092181810600124X

Yeloff D, Bennett KD, Blaauw M, Mauquoy D, Sillasoo Ü, van der Plicht J and van Geel B (2006) High precision 14C dating of Holocene peat deposits: A comparison of Bayesian calibration and wiggle-matching approaches. Quaternary Geochronology 1, 222-235. http://www.sciencedirect.com/science/article/pii/S1871101406001051

Malmer N, Johansson T, Olsrud M and Christensen TR (2005) Vegetation, climatic changes and net carbon sequestration in a North-Scandinavian subarctic mire over 30 years. Global Change Biology 11, 1895-1909. http://dx.doi.org/10.1111/j.1365-2486.2005.01042.x

Glaser PH, Siegel DI, Reeve AS, Janssens JA and Janecky DR (2004) Tectonic drivers for vegetation patterning and landscape evolution in the Albany River region of the Hudson Bay Lowlands. Journal of Ecology 92, 1054-1070. http://dx.doi.org/10.1111/j.0022-0477.2004.00930.x

Gunnarsson U, Granberg G and Nilsson M (2004) Growth, production and interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire. New Phytologist 163, 349-359. http://dx.doi.org/10.1111/j.1469-8137.2004.01108.x

(2003) Subject index. In ‘Trace Metals and other Contaminants in the Environment’. (Ed.^(Eds B.A. Markert AMB and Zechmeister HG) pp. 941-997. (Elsevier). http://www.sciencedirect.com/science/article/pii/S0927521503801571

Bragazza L, Gerdol R and Rydin H (2003) Effects of mineral and nutrient input on mire bio-geochemistry in two geographical regions. Journal of Ecology 91, 417-426. http://dx.doi.org/10.1046/j.1365-2745.2003.00773.x

Oswald WW, Brubaker LB, Hu FS and Gavin DG (2003) Pollen-vegetation calibration for tundra communities in the Arctic Foothills, northern Alaska. Journal of Ecology 91, 1022-1033. http://dx.doi.org/10.1046/j.1365-2745.2003.00823.x

Robson TM, Pancotto VA, Flint SD, Ballaré CL, Sala OE, Scopel AL and Caldwell MM (2003) Six years of solar UV-B manipulations affect growth of Sphagnum and vascular plants in a Tierra del Fuego peatland. New Phytologist 160, 379-389. http://dx.doi.org/10.1046/j.1469-8137.2003.00898.x

Gunnarsson U, Malmer N and Rydin H (2002) Dynamics or constancy in Sphagnum dominated mire ecosystems? A 40-year study. Ecography 25, 685-704. http://dx.doi.org/10.1034/j.1600-0587.2002.250605.x

Hoosbeek MR, Van Breemen N, Vasander H, Buttler A and Berendse F (2002) Potassium limits potential growth of bog vegetation under elevated atmospheric CO2 and N deposition. Global Change Biology 8, 1130-1138. http://dx.doi.org/10.1046/j.1365-2486.2002.00535.x

Kettles IM and Bonham-Carter GF (2002) Modelling dispersal of metals from a copper smelter at Rouyn-Noranda (Quebec, Canada) using peatland data. Geochemistry: Exploration, Environment, Analysis 2, 99-110. http://geea.lyellcollection.org/cgi/content/abstract/2/2/99

Mitchell EAD, Buttler A, Grosvernier P, Rydin H, Siegenthaler A and Gobat J-M (2002) Contrasted effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change. Journal of Ecology 90, 529-533. http://dx.doi.org/10.1046/j.1365-2745.2002.00679.x

Niemi R, Martikainen PJ, Silvola J, Sonninen E, Wulff A and Holopainen T (2002) Responses of two Sphagnum moss species and Eriophorum vaginatum to enhanced UV-B in a summer of low UV intensity. New Phytologist 156, 509-515. http://dx.doi.org/10.1046/j.1469-8137.2002.00532.x

Sinikka J (2002) Testacean amoebae in different types of mire following drainage and subsequent restoration. European Journal of Protistology 38, 59-72. http://www.sciencedirect.com/science/article/pii/S0932473904700498

Sonesson M, Carlsson BÅ, Callaghan TV, Halling S, Björn LO, Bertgren M and Johanson U (2002) Growth of two peat-forming mosses in subarctic mires: species interactions and effects of simulated climate change. Oikos 99, 151-160. http://dx.doi.org/10.1034/j.1600-0706.2002.990115.x

Aerts R, Wallén B, Malmer N and De Caluwe H (2001) Nutritional constraints on Sphagnum-growth and potential decay in northern peatlands. Journal of Ecology 89, 292-299. http://dx.doi.org/10.1046/j.1365-2745.2001.00539.x

Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H and Wallén B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology 7, 591-598. http://dx.doi.org/10.1046/j.1365-2486.2001.00433.x

Hoosbeek MR, Van Breemen N, Berendse F, Grosvernier P, Vasander H and Wallén B (2001) Limited effect of increased atmospheric CO2 concentration on ombrotrophic bog vegetation. New Phytologist 150, 459-463. http://dx.doi.org/10.1046/j.1469-8137.2001.00096.x

Nordbakken J-F (2001) Fine-scale five-year vegetation change in boreal bog vegetation. Journal of Vegetation Science 12, 771-778. http://dx.doi.org/10.2307/3236864

Bergman I, Klarqvist M and Nilsson M (2000) Seasonal variation in rates of methane production from peat of various botanical origins: effects of temperature and substrate quality. FEMS Microbiology Ecology 33, 181-189. http://www.sciencedirect.com/science/article/pii/S016864960000060X

Hobbie SE, Schimel JP, Trumbore SE and Randerson JR (2000) Controls over carbon storage and turnover in high-latitude soils. Global Change Biology 6, 196-210. http://dx.doi.org/10.1046/j.1365-2486.2000.06021.x

Sundberg S and Rydin H (2000) Experimental evidence for a persistent spore bank in Sphagnum. New phytologist. 148, 105-116.

Komulainen V-M, Tuittila E-S, Vasander H and Laine J (1999) Restoration of drained peatlands in southern Finland: initial effects on vegetation change and CO2 balance. Journal of Applied Ecology 36, 634-648. http://dx.doi.org/10.1046/j.1365-2664.1999.00430.x

Regina K, Silvola J and Martikainen PJ (1999) Short-term effects of changing water table on N2O fluxes from peat monoliths from natural and drained boreal peatlands. Global Change Biology 5, 183-189. http://dx.doi.org/10.1046/j.1365-2486.1999.00217.x

Såstad SM, Flatberg KI and Cronberg N (1999) Electrophoretic evidence supporting a theory of allopolyploid origin of the peatmoss Sphagnum jensenii. Nordic Journal of Botany 19, 355-362. http://dx.doi.org/10.1111/j.1756-1051.1999.tb01127.x

Sastad SM, Stenoien HK and Flatberg KI (1999) Species delimitation and relationships of the Sphagnum recurvum complex (Bryophyta)--as revealed by isozyme and RAPD markers. Systematic botany. 24, 95-107.

Soro A, Sundberg S and Rydin H (1999) Species diversity, niche metrics and species associations in harvested and undisturbed bogs. Journal of Vegetation Science 10, 549-560. http://dx.doi.org/10.2307/3237189

Jacquemart A-L (1998) Andromeda polifolia L. Journal of Ecology 86, 527-541. http://dx.doi.org/10.1046/j.1365-2745.1998.00274.x

Schipperges B and Rydin H (1998) Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation. New Phytologist 140, 677-684. http://dx.doi.org/10.1046/j.1469-8137.1998.00311.x

Atkin OK (1996) Reassessing the nitrogen relations of Arctic plants: a mini-review. Plant, Cell & Environment 19, 695-704. http://dx.doi.org/10.1111/j.1365-3040.1996.tb00404.x

Chapin FS, Bret-Harte MS, Hobbie SE and Zhong H (1996) Plant functional types as predictors of transient responses of arctic vegetation to global change. Journal of Vegetation Science 7, 347-358. http://dx.doi.org/10.2307/3236278

Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological monographs. 66, 503-522.

Nordbakken J-F (1996) Fine-scale patterns of vegetation and environmental factors on an ombrotrophic mire expanse: a numerical approach. Nordic Journal of Botany 16, 197-209. http://dx.doi.org/10.1111/j.1756-1051.1996.tb00958.x

Maya N (1995) Radionuclides in the moss-lichen cover of tundra communities in the Yamal Peninsula. Science of The Total Environment 160–161, 749-752. http://www.sciencedirect.com/science/article/pii/004896979504408S

Bisang I and Urmi E (1994) Studies on the status of rare and endangered bryophytes in Switzerland. Biological Conservation 70, 109-116. http://www.sciencedirect.com/science/article/pii/000632079490278X

Himberg KK and Pakarinen P (1994) Atmospheric PCB deposition in Finland during 1970s and 1980s on the basis of concentrations in ombrotrophic peat mosses (Sphagnum). Chemosphere 29, 431-440. http://www.sciencedirect.com/science/article/pii/0045653594904316

Tolonen K, Warner BG and Vasander H (1994) Ecology of Testaceans (Protozoa: Rhizopoda) in Mires in Southern Finland: II. Multivariate Analysis. Archiv für Protistenkunde 144, 97-112. http://www.sciencedirect.com/science/article/pii/S0003936511802307

Nilsson M and Rülcker C (1992) Seasonal variation of active fungal mycelium in an oligotrophic Sphagnum mire, northern Sweden. Soil Biology and Biochemistry 24, 795-804. http://www.sciencedirect.com/science/article/pii/003807179290255V

Økland RH (1990) Regional variation in SE Fennoscandian mire vegetation. Nordic Journal of Botany 10, 285-310. http://dx.doi.org/10.1111/j.1756-1051.1990.tb01774.x

Økland RH (1990) A phytoecological study of the mire Northern Kisselbergmosen, SE Norway. III. Diversity and habitat niche relationships. Nordic Journal of Botany 10, 191-220. http://dx.doi.org/10.1111/j.1756-1051.1990.tb01766.x

A.B.Christina H (1988) A demographic study of aerial shoots of carex rostrata in relation to water level. Aquatic Botany 30, 81-93. http://www.sciencedirect.com/science/article/pii/0304377088900083

Svensson G (1988) Bog development and environmental conditions as shown by the stratigraphy of Store Mosse mire in southern Sweden. Boreas 17, 89-111. http://dx.doi.org/10.1111/j.1502-3885.1988.tb00126.x

Galten L (1987) Numerical analysis of mire vegetation at Åsenmyra, Engerdal, Central Southern Norway and comparison with traditional Fennoscandian paludicology. Nordic Journal of Botany 7, 187-214. http://dx.doi.org/10.1111/j.1756-1051.1987.tb00931.x

Mannion AM (1986) Plant macrofossils and their significance in Quaternary palaeoecology: Part III: Applications: late glacial, postglacial and archaeological deposits. Progress in Physical Geography 10, 517-546. http://ppg.sagepub.com

Økland RH (1986) Reseating of ecological gradients. II. The effect of scale on symmetry of species response curves. Nordic Journal of Botany 6, 661-670. http://dx.doi.org/10.1111/j.1756-1051.1986.tb00465.x

Økland RH (1986) Reseating of ecological gradients. III. The effect of scale and niche breath measurements. Nordic Journal of Botany 6, 671-677. http://dx.doi.org/10.1111/j.1756-1051.1986.tb00466.x

Rydin H and McDonald AJS (1985) Photosynthesis in Sphagnum at different water contents. Journal of bryology., 4.

Rydin H and McDonald AJS (1985) Tolerance of Sphagnum to water level. Journal of bryology., 4.

Alpert P and Oechel WC (1984) Microdistribution and water loss resistances of selected bryophytes in an Alaskan Eriophorum tussock tundra. Ecography 7, 111-118. http://dx.doi.org/10.1111/j.1600-0587.1984.tb01111.x

Alpert P and Oechel WC (1982) Bryophyte vegetation and ecology along a topographic gradient in montane tundra in Alaska. Ecography 5, 99-108. http://dx.doi.org/10.1111/j.1600-0587.1982.tb01023.x

Ovenden L (1982) Vegetation history of a polygonal peatland, northern, Yukon. Boreas 11, 209-224. http://dx.doi.org/10.1111/j.1502-3885.1982.tb00715.x

H.J.B B (1981) Late Wisconsin vegetational and climatic history at Kylen Lake, northeastern Minnesota. Quaternary Research 16, 322-355. http://www.sciencedirect.com/science/article/pii/0033589481900156

Kazda J (1980) Mycobacterium sphagni sp. nov. Int. J. Syst. Bacteriol. 30, 77-81. http://ijs.sgmjournals.org/cgi/content/abstract/30/1/77

Kazda J and Muller K (1979) Mycobacterium komossense sp. nov. Int. J. Syst. Bacteriol. 29, 361-365. http://ijs.sgmjournals.org/cgi/content/abstract/29/4/361

Pakarinen P (1978) Production and nutrient ecology of three Sphagnum species in southern Finnish raised bogs. Annales botanici Fennici 15, 1.

Granhall ULF and Hofsten AV (1976) Nitrogenase Activity in Relation to Intracellular Organisms in Sphagnum Mosses. Physiologia Plantarum 36, 88-94. http://dx.doi.org/10.1111/j.1399-3054.1976.tb05033.x

Abbott GD, Swain EY, Muhammad AB, Allton K, Belyea LR, Laing CG and Cowie GL Effect of water-table fluctuations on the degradation of Sphagnum phenols in surficial peats. Geochimica et Cosmochimica Acta 106, 177-191. http://www.sciencedirect.com/science/article/pii/S0016703712007326

Andersson RA, Kuhry P, Meyers P, ZebÜhr Y, Crill P and MÖrth M Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic. Organic Geochemistry 42, 1065-1075. http://www.sciencedirect.com/science/article/pii/S014663801100177X

Bingham EM, McClymont EL, VÄliranta M, Mauquoy D, Roberts Z, Chambers FM, Pancost RD and Evershed RP Conservative composition of n-alkane biomarkers in Sphagnum species: Implications for palaeoclimate reconstruction in ombrotrophic peat bogs. Organic Geochemistry 41, 214-220. http://www.sciencedirect.com/science/article/pii/S0146638009001375

Breeuwer A, Heijmans MMPD, Robroek BJM and Berendse F Field Simulation of Global Change: Transplanting Northern Bog Mesocosms Southward. Ecosystems. 13, 712-726. http://dx.doi.org/10.1007/s10021-010-9349-y

Cancellieri D, Leroy-Cancellieri V, Leoni E, Simeoni A, Kuzin АY, Filkov АI and Rein G Kinetic investigation on the smouldering combustion of boreal peat. Fuel. http://www.sciencedirect.com/science/article/pii/S0016236111006120

Cancellieri D, Leroy-Cancellieri Vr, Leoni E, Simeoni A, Kuzin ÐlY, Filkov ÐlI and Rein G Kinetic investigation on the smouldering combustion of boreal peat. Fuel 93, 479-485. http://www.sciencedirect.com/science/article/pii/S0016236111006120

Forbrich I, Kutzbach L, Hormann A and Wilmking M A comparison of linear and exponential regression for estimating diffusive CH4 fluxes by closed-chambers in peatlands. Soil Biology and Biochemistry 42, 507-515. http://www.sciencedirect.com/science/article/pii/S0038071709004672

Forbrich I, Kutzbach L, Wille C, Becker T, Wu J and Wilmking M Cross-evaluation of measurements of peatland methane emissions on microform and ecosystem scales using high-resolution landcover classification and source weight modelling. Agricultural and Forest Meteorology 151, 864-874. http://www.sciencedirect.com/science/article/pii/S016819231100058X

Gerdol R and Vicentini R Response to heat stress of populations of two Sphagnum species from alpine bogs at different altitudes. Environmental and Experimental Botany 74, 22-30. http://www.sciencedirect.com/science/article/pii/S009884721100102X

Haapala JK, MÖrsky SK, Rinnan R, Saarnio S, Martikanen PJ, Holopainen T and Silvola J Long-term effects of ozone on CO2 exchange in peatland microcosms. Atmospheric Environment 45, 4002-4007. http://www.sciencedirect.com/science/article/pii/S1352231011004468

Haas JN and Erhardt A Prof. Dr. Heinrich Zoller (1923–2009). Review of Palaeobotany and Palynology 162, 111-115. http://www.sciencedirect.com/science/article/pii/S0034666710000709

MÖrsky SK, Haapala JK, Rinnan R, Saarnio S, Silvola J, Martikainen PJ and Holopainen T Minor effects of long-term ozone exposure on boreal peatland species Eriophorum vaginatum and Sphagnum papillosum. Environmental and Experimental Botany 72, 455-463. http://www.sciencedirect.com/science/article/pii/S0098847210002248

Olsrud M and Christensen TR Carbon partitioning in a wet and a semiwet subarctic mire ecosystem based on in situ 14C pulse-labelling. Soil Biology and Biochemistry 43, 231-239. http://www.sciencedirect.com/science/article/pii/S0038071710003676

Pancost RD, McClymont EL, Bingham EM, Roberts Z, Charman DJ, Hornibrook ERC, Blundell A, Chambers FM, Lim KLH and Evershed RP Archaeol as a methanogen biomarker in ombrotrophic bogs. Organic Geochemistry 42, 1279-1287. http://www.sciencedirect.com/science/article/pii/S0146638011001823

Peltoniemi K, StrakovÁ P, Fritze H, IrÁizoz PA, Pennanen T and Laiho R How water-level drawdown modifies litter-decomposing fungal and actinobacterial communities in boreal peatlands. Soil Biology and Biochemistry 51, 20-34. http://www.sciencedirect.com/science/article/pii/S0038071712001526

Swain EY and Abbott GD The effect of redox conditions on sphagnum acid thermochemolysis product distributions in a northern peatland. Journal of Analytical and Applied Pyrolysis. http://www.sciencedirect.com/science/article/pii/S0165237012002859

Weedon JT, Aerts R, Kowalchuk GA, van Logtestijn R, Andringa D and van Bodegom PM Temperature sensitivity of peatland C and N cycling: Does substrate supply play a role? Soil Biology and Biochemistry 61, 109-120. http://www.sciencedirect.com/science/article/pii/S0038071713000758

WojtuN Ba, Samecka-Cymerman A, Kolon K and Kempers AJ Decreasing concentrations of metals in Sphagnum mosses in ombrotrophic mires of the Sudety mountains (SW Poland) since late 1980s. Chemosphere. http://www.sciencedirect.com/science/article/pii/S0045653512015081

 


RIRDC Farm Diversity Website: http://www.farmdiversity.com.au/

 

Rural Industries Research and Development Corporation (RIRDC)
Home Page

RIRDC New and Developing Plant Industries
Home Page

includes publications and project reports

RIRDC New Crop Industries Handbook
530 pages
as pdf download


RIRDC
essential oils, tea tree oil, wildflowers and natives, bioenergy, organic farming


Grateful acknowledgment is made to the following: for plant names: Australian Plant Name Index, Australian National Herbarium http://www.anbg.gov.au/cpbr/databases/apni-search-full.html; ; The International Plant Names Index, Royal Botanic Gardens, Kew/Harvard University Herbaria/Australian National Herbarium http://www.ipni.org/index.html; Plants Database, United States Department of Agriculture, National Resources Conservation Service http://plants.usda.gov/;DJ Mabberley (1997) The Plant Book, Cambridge University Press (Second Edition); JH Wiersma and B Leon (1999) World Economic Plants, CRC Press; RJ Hnatiuk (1990) Census of Australian Vascular Plants, Australian Government Publishing Service; for information: Science Direct http://www.sciencedirect.com/; Wiley Online Library http://onlinelibrary.wiley.com/advanced/search; High Wire http://highwire.stanford.edu/cgi/search; Oxford Journals http://services.oxfordjournals.org/search.dtl; USDA National Agricultural Library http://agricola.nal.usda.gov/booleancube/booleancube_search_cit.html; for synonyms: The Plant List http://www.theplantlist.org/; for common names: http://en.wikipedia.org/wiki/Main_Page; etc.


All information is included in good faith but this website does not warrant or guarantee the accuracy of any information on these pages, nor does the website accept responsibility for any loss arising from the use of this information.  Views and opinions are those of the authors themselves.  Every effort has been made to respect copyright owners' rights. 


Contact: Webmaster, Australian New Crops Website
australiannewcrops@gmail.com
Latest update March 2017 by: ANCW